SLOPE INDICATOR GeoFlex In-Place Inclinometer

©2019 DGSI. All Rights Reserved.

Table of Contents

Chapter 1	
Introduction	
Chapter 2	
Installation	5
Chapter 3	
Data Reduction	9
Chapter 4	
Connection to Data Logger	

CHAPTER

GEOFLEX INTRODUCTION

Introduction

The GeoFlex system consists of a vertically installed casing and a string of GeoFlex in-place inclinometer MEMS sensors. The casing provides access for the subsurface measurements and moves with the surrounding ground. The casing is installed in a borehole that passes through a suspected zone of movement into stable ground below. The GeoFlex sensors are installed in the casing and measure inclination from vertical. As ground movement occurs, the casing moves with it, changing the inclination of the sensors inside the casing.

The inclination measurements are then processed to provide displacement readings in millimeters or inches. In most applications, the sensors are connected to a data acquisition system and data processing is completed by a computer program.

System Components

- Casing
 - 2.75 in (70mm) ABS Inclinometer Casing, or
 - 1.5 in (38mm) Schedule 40 PVC Pipe
- GeoFlex Suspension Kit (specific to type of casing)
- GeoFlex Segments (10 ft, 8 ft, 6 ft, 4 ft or 2 ft)
- GeoFlex Jumper Cable
- GeoFlex Bottom Plug

Advantages

Real Time Monitoring:

The GeoFlex system is ideal for continuous, unattended monitoring and can deliver readings in near-real time.

Convenient Shipping and Transport:

GeoFlex systems have joints capable of bending to 90°, allowing for a compact shipping option. Five segments, each 10 feet long, can be shipped in a carton measuring approximately 26 x 26 x 26 in (64 x 64 x 64 cm) and which weighs less than 50 pounds (22 kilograms). This allows for the system to be shipped via common overnight carrier as well as fit in most standard vehicles.

Figure 1: GeoFlex segment folded for transport

Flexible Configurations:

GeoFlex systems have standard segment lengths of 10 feet. but can be custom ordered in lengths of 2, 4, 6 or 8 feet in order to instrument the precise length required.

The GeoFlex system can also be installed with sensorless nodes at the top of the system, allowing the designer to economize by only monitoring the zone of interest and bypassing the upper layers.

Durable Components:

Nodes, cables, connectors and gage rods are exceptionally durable, making it practical to remove the systems at the end of the project and redeploy them on other projects.

Data Reduction:

The GeoFlex system outputs the displacement as engineering units, requiring less computing power and a lighter load on your data acquisition system. The nodes are preloaded with the calibration information, allowing the segments to be installed in any order.

GEOFLEX INSTALLATION

Preparation

Verify that all system components have been received and are ready for installation.

Suspension Kit: One suspension kit is used for each string.

Figure 2: GeoFlex suspension kit for PVC pipe

GeoFlex segments or chains

Standard Segments: Each standard GeoFlex segment is 10 ft in length and has a male connector at the upper end and a female connector at the lower end. The segment consists of 5 nodes and each node has a 2 ft gage length. The upper end can also be identified by its lack of joint on the node. The lower end has a universal joint, as can be seen in the images below.

Custom Segments: The GeoFlex segments can also be manufactured in shorter lengths of 2, 4, 6 or 8 ft in length (with 1, 2, 3 or 4 nodes, respectively). Each of these segments also has a male connector at the upper end and a female connector at the lower end. The upper end can also be identified by its lack of joint on the

node. The lower end has a universal joint, as can be seen in the images below.

Figure 4: GeoFlex bottom node (female connector and universal joint)

GeoFlex Jumper Cable: One jumper cable is used for each string. The jumper cable has a female connector on one end and exposed inner conductor wires on the other for connection to the data logger.

GeoFlex Bottom Plug: One bottom plug is used for each standard configuration string. The bottom plug has a male connector on one end and is used to protect the last node from water ingress via the connector.

Installation

Attach the Bottom Plug to the female connector on the first segment to be placed in the casing.

Insert the bottom end of the first segment into the casing.

If inclinometer casing is being used, verify that the centralizer standoffs are placed in the grooves orthogonal to the direction of movement. The X-axis direction is marked on the sensor and should point towards the direction of anticipated movement.

If PVC pipe is being used, roughly align the X-axis direction marking on the sensor with the direction of anticipated movement. Adjustments may be made once the entire string has been installed.

Continue to lower the segment into the casing until four nodes have been inserted. Fold the fifth node over the top edge of the casing. For deeper installations, a clamp (e.g. vise grips) may be attached to the upper node to protect it from accidentally dropping into the casing.

While lowering the nodes, the signal cable should be placed in the notch of the centralizer to avoid pinching it between the segment and the casing.

Connect the signal cables of the installed segment and the next segment to be installed. Note - it does not matter in which order the segments are installed, as the data logger will query the sensors and number them at startup.

Remove the pin from the universal joint of the installed segment and insert the top node's gage rod, pinning it in place. Verify that the alignment of the sensors is the same for both segments.

Lower the nodes into the casing, repeating the above steps until all but one segment has been installed in the casing.

Attach the suspension kit to the top of the last segment.

Connect the last segment to the installed segments, as per above.

Lower the last segment into the casing, aligning the suspension kit so that it is firmly seated on the top of the casing. The male connector should extend out of the casing.

Attach the jumper cable to the male connector and to the data logger.

CHAPTER

DATA REDUCTION

Data Format

1. The Campbell Data Logger outputs a *.dat file. This file contains the readings in a comma-separated format, which can be imported into a spreadsheet program, such as Microsoft ExcelTM.

2. Once imported, the data will appear as below:

4	A		C	D			6	н	1	1	ĸ	L	м	N	0	P	Q	R	5	T	U	V	W	х
1	TIMESTAMP	RECORD	Batt_volt	Plenp	X_(1)	¥_(1)	Volt(1)	Temp(1)	X_(2)	Y_(2)	Volt(2)	Temp(2)	X.(3)	Y_(1)	Volt(3)	Temp(3)	X_(4)	Y_(4)	Volt(4)	Temp(4)	X_(5)	Y_(5)	Volt(5)	Temp(5)
2	6/25/2018 18:30	6532	13.12	24.45	-25.41509	15.96104	12.62276	23.63629	-58.13737	35.18684	12.76975	25.26657	-29.56236	-10.1446	12.42276	24.22918	-01.57721	36.82491	12.62276	22.28995	-34,73883	2.042665	12.76975	20.25606
3	6/25/2018 18:15	6030	13.13	24.28	-25.38544	15.95506	12.76975	22.76672	-53.17496	35.06727	12.76975	25.34713	-29.50887	-38.15673	12.62276	24.23227	-31.6962	36.63987	12.76975	22.21091	-34.85069	3.8834	12.76975	20.01596
4	6/35/2018 18:40	6234	13.34	24.33	-25.35001	15.99873	12.76975	22,70087	-53.13404	35.26652	12,76975	25.3095	-29.58621	-9.978203	12,76975	24.3015	-31.81725	36.76278	12.36975	22.26363	-24.9009	2.025181	12.76975	20.45621
3	6/25/2018 18:45	6135	13.34	24.01	-25.43585	15.54726	12.76975	22.60864	-58.02837	35.23344	12,76975	25.3995	-29.17641	-30.30346	12,76975	24.22918	-31.79305	16.71712	12.76975	22.28995	-34,78923	2.024333	12.76975	20.18909
6	6/25/2018 18:50	6136	13.34	23.87	-25.47583	16.06767	12.76975	22.39786	-58.13278	35.09196	12.76975	25.29112	-29.1919	-38.13624	12,76975	24.15381	-01.01105	36.71041	12.76975	22.15817	-34.8	2.027644	12.76975	20.29611
7	6/25/2018 18:55	6037	13.34	29.72	-25.46908	15.99638	12.76975	22.29245	-58.14171	35.24204	12.76975	25.38652	-28.9816	-38.13090	12.70975	24.07532	-31.75008	36.77461	12.36975	22.25043	-34.75964	2.309595	12.76975	20.08264
۰.	6/25/2018 19:00	6136	13.15	23.61	-25.44954	15.96796	12.76975	22.12119	-53.10346	35.09436	12.76975	25.1604	-29.17996	-30.11326	12,76975	24.07532	-31.61276	36.70624	12.36975	22.3822	-24.87637	1.977641	12.76975	20.17606
9	6/25/2018 20:00		18.17	22.9	-25-21228	15.79681	12.76975	21.1175	-58.08345	35.12051	12.90674	24.88362	-29.05179	-30.34739	12,76975	24.14072	-31.69661	36.7724	12.76975	22.17136	-24.92956	2.022574	12,78975	19.90921
90	6/25/2018 21:00			22.79	-25.37925	15.72M7	12.76975	20.97498	-53.03663	35.24311	12.95636	24.80197	-29.22868	-30.54828	12.70975	24.17996	-01.50552	36.80054	12.76975	22.1295	-34.87983	1.915247	12,76975	19.89587
11	6/25/2018 22:00	6543	13.17	22.7	-25.57894	15.50137	12.76975	20.76416	-58.07822	35.22713	12.95676	24.56302	-29.06897	-30.13514	12,76975	24.00995	-31.66167	36.7502	12.36975	22.58454	-34.89609	2.063257	12,76975	20.05397
12	6/25/2018 23:00	6142	13.17	22.87	-25.41125	15.66672	12.76975	20.8432	-53.04002	85.13475	12.99674	24.45685	-29.11/255	-10.15229	12,76975	24.15381	-31.6308	36.64246	12.76975	22.13384	-34.85298	2.016896	12.76975	20.00259
13	6/26/2018 0:00	6543	13.37	22.75	-25.66455	15.59787	12.76975	20.61523	-58.20204	34.96492	12.95674	24.371	-29.27796	-30.21519	12.76975	24.04936	-31.4756	36.82608	12,76975	22.30313	-34.86719	2.119423	12,76975	20.40283
54	6/26/3018 1:00		13.17	22.67	-25.7208	15.58302	12.76975	20.43478	-58.02592	35.3664	12.95636	34,3341	-29.17833	-10.09005	12,70975	24.08841	-31.53091	36.81695	12.36975	22.52716	-34,908	1.946134	12.70975	20.06901
15	6/26/2018 2:00	6945	18.17	22.79	-25.71293	15.42154	12,76975	20.23718	-52.96874	35.20765	12.90674	24.271	-29.31514	-30.00175	12,76975	24,33079	-31.53248	36.82796	12,36975	22.3822	-34.82204	1.827177	12,76975	19,78913
16	6/26/2018 3:00				-25.9866	15.15701	12.76975	15.88144	-58.15527	35.09901	12.95634	23.84622	-29.41597	-30.04579	12,76975	24.57227	-81.62871	36.83503	12.76975	22.40857	-34.91397	1.968321	12,76975	20.17606
17	6/26/3018 4:00	6547	13.38	22.22	-25.81741	15.42362	12.76975	25.53414	-53.05482	35.13890	12.90636	24.00549	-29.58802	-38.18509	12.70975	23.9707	-31.55902	36.82271	12.36975	22.21093	-24.95663	2.068547	12.76975	20.37606
18	6/26/2018 5:00	6548	13.38	22.34	-25.89179	15.38386	12.76975	13,74969	-53.07644	35.02955	12.90674	23.79312	-29.29854	-30.09816	12,76975	24,23227	-31.5202	36.861	12.36975	22.3295	-34,92749	2.172043	12.76975	20.32278
19	6/26/2018 6:00	6049	13.19	22.06	-26.01517	13.36545	12.76975	19.65747	-58.19992	15.0756	12.90674	23.63362	-29.17479	-10.14545	12.76975	24.27148	-31.4164	36.54572	12.76975	22.55353	-24.8672	2.005536	12.76975	20.20273
20	6/26/2018 7:00	6250	13.38	22.39	-26.07298	15.41572	12.76975	20.15448	-58.12697	35.05233	12.95636	23.71347	-29.17314	-30.06538	12.70975	24.29458	-31.53749	36.85274	12.76975	22.34268	-34.96636	2.345589	12.76975	20.30279
21	6/26/2018 7:05	6030			-25.90891	15.52159	_	20.09225	-53.14169	35.03426	12.90676		-29.20765		12,76975					22.3822	-24,93555	2.231705	12.76975	
22	6/26/2018 7:10	6152		22.19	-25.91525	15.5396		20.25034	-52.9977	35.05701	12.90634	23.96567	-29.27178	-5.375496	12,76975			36.80055	12,76975	22.17136	-34.83589	2.273689	12,76975	
23	6/26/2018 7:15	6553		22.19	-25.81917	15.47961	12.76975	20.31622	-53.3468	35.0985	12.95676			-38.67007	12.76975	24.23227	-01.57977			22.5822	-34.99971	2.596200	12.76975	20.25607
24	6/26/2018 7:20	6154	13.38	22.39	-36.1129	15.25066	12.26975	29.82877	-58.23131	35.04213	12.90636	23.84622	-29.2651	-30.04797	12,76975	24.07532	-31.39229	36.82227	12.36975	22.36902	-24.9014	2.219913	12.76975	20.34234

- 3. The columns consist of the following:
 - a. TIMESTAMP date and time the reading was taken.
 - b. RECORD consecutive reading that was taken since last data logger reboot.
 - c. Batt_volt voltage of data logger battery at time of reading.
 - d. PTemp temperature measured at the data logger.
 - e. X_(n) X-axis tilt reading, in mm/m
 - f. Y_(n) Y-axis tilt reading, in mm/m
 - g. Volt(n) voltage input to the sensor, in V
 - h. Temp(n) temperature measured by sensor node, in $^{\circ}C$

where n = sensor node location (1 is the top sensor, 2 is second from the top, etc.)

Calculations

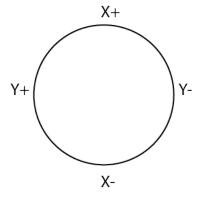
Calculating Tilt in mm/m

It is not necessary to calculate tilt, as the GeoFlex system outputs the tilt in mm/m natively. The sign of the result indicates the direction of the tilt. The X+ direction of the sensor node is marked on every node.

Calculating Tilt in Degrees

 $Tilt(degrees) = arcsin(Tilt_{mm/m}/1000)$

Calculating Deviation


To calculate deviation over the gauge length of the sensor node, use one of the formulas below:

Deviation_{mm} = $\text{Tilt}_{mm/m} \ge 0.6m$ or Deviation_{in} = $\text{Tilt}_{mm/m} \ge (24 \text{ in } / 1000 \text{ in})$

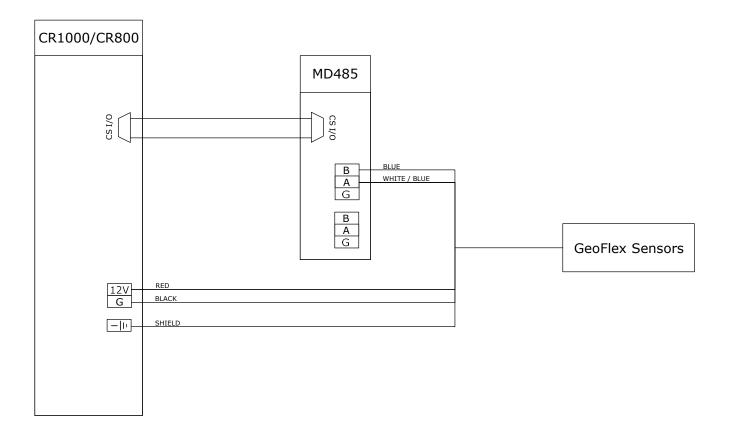
Calculating Displacement

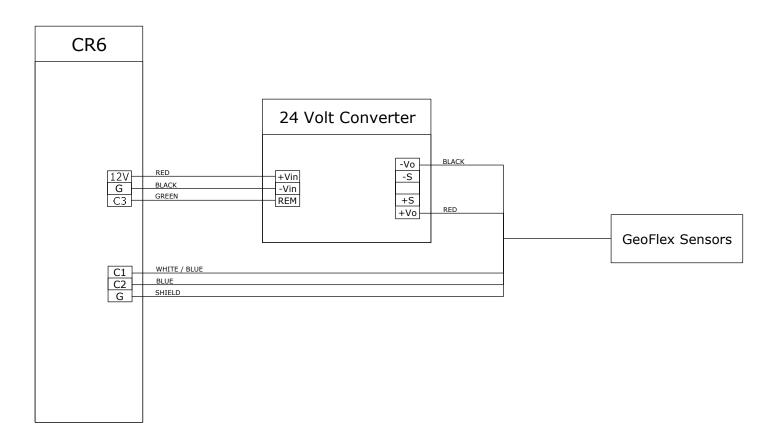
Displacement (movement) is the change in deviation:

Displacement = Deviation_{current} - Deviation_{initial}

CHAPTER

CONNECTION TO DATA LOGGERS


Overview


These instruction provide information needed for reading the GeoFlex system with the Campbell Scientific CR300, CR800, CR1000, CR1000X or CR6 data loggers. Please note that the diagrams presented on the following page are examples and do not cover every potential connection type. A wiring diagram will be provided with each data logger system that is purchased.

Limitations

The last sensor node in the chain must receive 8 volts. This limits the number of sensor nodes that can be connected based on the distance of the chain from the data logger.

Number of Nodes	Jumper Length, m (12V supply)	Jumper Length, m (24V supply)
10	320	-
25	122	-
50	52	215
75	24	139
100	5	97
125	-	69
150	-	47
175	_	28
200	-	12

