

Manuál - ČJ Verze 1.0 – 2021

Obsah

Popis přístroje2
Požadované příslušenství2
LCD displej2
Bodové měření2
Instalace stíracího mechanismu a senzorů2
Manipulace s pH a lontově selektivní elektrodou2
Používání RDO a RDO Fast Cap2
Wireless TROLL Com
Spárování přístroje s VuSitu Mobile2
Kalibrace senzorů2
Bodové měření ve VuSitu2
Připojení k Win-Situ na PC2
Práce v prostředí Win-Situ2
Připojení Aqua TROLL 500 k PLC nebo Dataloggeru2
Modbus PLC rozhraní2
Péče a údržba2

Popis přístroje

Plochá část konektoru přístroje zapadá do ploché části konektoru kabelu

Požadované příslušenství

Komunikační zařízení

Pro kalibraci, konfiguraci a spuštění Aqua TROLL 500 potřebujete komunikační zařízení.

Wireless TROLL Com

Zajišťuje zdroj energie pro Aqua TROLL 500.

Konfiguruje a spouští přístroj pomocí Bluetooth.

Připojuje Aqua TROLL 500 k PC pomocí USB nebo Bluetooth.

Odolný kabel s otočným zámkem

Připojuje Aqua TROLL 500 k Wireless TROLL Com, nebo USB TROLL Com.

S kapilárou, nebo bez.

Kabel

Senzory

Dostupné senzory

- 1. Teplota
- 2. Vodivost/teplota
- 3. pH/ORP
- 4. 4.RDO
- 5. Turbidita
- 6. Amoniak
- 7. Chloridy
- 8. Nitráty
- 9. Chlorofil a
- 10. BGA-PC
- 11. BGA-PE
- 12. Rhodamin WT

Software

Win-Situ 5 Software pro PC

Kalibruje, konfiguruje a načítá Aqua TROLL 500, z PC.

VuSitu Mobilní aplikace

Kalibruje, konfiguruje a spouští Aqua TROLL 500 z Bluetooth zařízení.

Telemetrie

- Nový datalogger s dálkovým přenosem dat, kombinovaný modem 4G LTE a IoT, v nabídce i satelitní verze pro území bez pokrytí signálem
- Určeno pro instalaci přímo do vrtu průměr 48 mm, možnost použít skrytou anti-vandal anténu
- Přímé připojení multiparametrických sond a hladinoměrů, automatická detekce senzoru stisknutím jednoho tlačítka
- Vestavěný barometrický senzor s přesností +/- 1 hPa umožňuje připojení senzorů s přímou i nepřímou kompenzací tlaku
- Přenos dat dle potřeb uživatele, na server, email nebo do HydroVue Data Service uživatelsky přívětivá webová aplikace
- Notifikace označují stav baterie, připojení přístroje, síťové připojení a připojení HydroVu přímo na těle přístroje
- Dvakrát až pětkrát delší výdrž baterie než u podobných zařízení (splňuje požadavky nízko odběrových zařízení LPWAN)

Rozměry přístroje

41,5 cm

LCD displej

Zjistěte stav přístroje a nastavení přístroje pomocí LCD displeje. Sonda musí být připojena k Wireless TROLL Com nebo jinému zdroji energie.

Přístup k LCD Menu

Aktivací LCD displeje se zobrazí stav senzorů.

Držte přístroj horizontálně a pomalu poklepejte 3-4 krát na logo Aqua TROLL 500 pro hlavní menu.

Exit

Bluetooth

123

Д

Multi

Nakloňte přístroj vlevo nebo vpravo k procházení menu.

Jedním klepnutím potvrďte výběr, když jeho pozadí zčerná.

Možné stavy portů		
	Senzory instalovány	
	Záslepka portu instalována	
4 1 3 2	Chyba senzoru/portu	
Možné stavy zdroj energie		•
9.0v	Úroveň zdroje je v normálu	
8.2v !	Úroveň zdroje není v normálu	
Možné stavy připojení		
*	Připojení pomocí Bluetooth	Je možné aktivovat Bluetooth komunikaci přímo v sondě pomocí volby Bluetooth v menu.
- @ -	Připojení kabelem	
Zprávy o chybách		
4 Install All 3 2/1 Sensors!	Port není obsazen	
RDO Cap expired!	RDO hlavice po expiraci	

Bodové měření

Změřte aktuální hodnoty pomocí Aqua TROLL 500, kabelu, Wireless TROLL Com a Bluetooth zařízení.

Bodové měření

Pro bodové měření umístěte Aqua TROLL 500 do požadovaného média a postupujte podle níže uvedených kroků.

Vyjměte přístroj z obalu.

Vyjměte sondu, senzory a materiál na údržbu z krabice.

Nainstalujte RDO hlavici a pH/ORP senzor.

- a. Pokud váš přístroj obsahuje pH/ORP senzor, je třeba ho nainstalovat před kalibrací a měřením.
- b. Instalujte RDO hlavici na RDO senzor.

3

Stáhněte a instalujte software.

- a. Uživatelé PC, navštivte www.in-situ.com
- b. Do mobilních zařízení využijte Appstore či play.google.com

4 Připojte přístroj k TROLL Com.

- a. Připojte kabel k Wireless TROLL Com a Aqua TROLL 500.
- b. Stiskněte tlačítko power na Wireless TROLL Com a spárujte s VuSitu mobilní aplikací.
- 5

Nakalibrujte.

Proveďte jedno nebo multi bodovou kalibraci.

6 Nakonfigurujte přístroj a provedte měření.

- a. Vytvořte lokalitu ve VuSitu.
- b. Proveďte měření pomocí VuSitu Snapshot nebo v Live Readings mode.
- c. Uložte je a sdílejte přes email, SMS nebo cloudové úložiště.

Instalace stíracího mechanismu a senzorů

Sejměte ochranný válec.

Srovnejte senzor s drážkou stíracího mechanismu.

Otočte ochranný válec a umístěte děrováním blízko středu přístroje pro kalibraci.

Instalujte stírací mechanismus.

Utáhněte závit na konci každého senzoru.

Otočte omezovač a před měřením nasaďte koncový uzávěr.

Instalujte senzory v jakémkoliv pořadí.

Odšroubujte koncový uzávěr ochranného válce.

Manipulace s pH a lontově selektivní elektrodou

Kolem přechodového elementu amoniakového, chloridového, dusičnanového a pH senzoru se může usazovat sůl. Pro odstranění opláchněte destilovanou vodou.

Potenciální usazenina soli. Pokud je to nutné, opláchněte destilovanou vodou.

Než poprvé použijete **ISE senzory**, vyměňte referenční roztok. Senzory nechte namočené v kalibračním roztoku 4-24 hodin před měřením. Pro pH sensory není tento krok potřeba.

Používání RDO a RDO Fast Cap

Stírací mechanismus může výrazně snížit životnost RDO Fast Cap. Opotřebení se bude lišit dle aplikace. Před použitím ověřte funkci senzoru a pokud je poškozen, RDO Fast Cap vyměňte.

 Před použitím zkontrolujte fólii. Pokud je poškozena vyměňte uzávěr.

RDO Fast Cap

Stírací mechanismus

Wireless TROLL Com

Pro kalibraci přístroje, konfiguraci nebo přímé načítání musíte připojit Aqua TROLL 500 k bezdrátovému Wireless TROLL Com.

Připojte kabel k bezdrátovému Wireless TROLL Com.

Připojte opačný konec kabelu k Aqua TROLL 500.

Stiskněte tlačítko power.

Stáhněte a instalujte VuSitu mobilní aplikaci z Google Play store nebo App Store.

Zapněte Wireless TROLL Com a otevřete VueSitu mobilní aplikaci.

Při prvním připojení vyberte **Add New Device.**

Najděte sériové číslo pod žlutou krytkou na Wireless TROLL Com.

V Bluetooth nastavení, zvolte sériové č. Wireless TROLL COM.

Vyberte Choose or Add a Device.

Zvolte tlačítko back pro zobrazení připojených zařízení.

Zvolte tlačítko back a na sériové číslo v seznamu.

Ovládání VuSitu

Po spárování Wireless TROLL Com s VuSitu, aplikace zobrazí vždy po spuštění seznam všech připojených zařízení. Na tomto displeji se můžete dostat ke všem prvkům aplikace.

Displej připojeného přístroje

Přístupové menu.		4:27 PM	Přístup k nápovědě.
	Aqua TROLL 500 SN 50002 v0.13 🛱		
	Battery: 84% remaining		
	Instrument Time: 4:27 PM 1/15/2018		
Provedení bodového			
měření, nebo kontinuálního měření	▶ 🖄 Live Readings		Kalibrace
v intervalu 2s.	▲ Calibrations	<	senzorů.
Odpoiení	Instrument Settings	<	Přístup k nastavení času a telemetrie.
přístroje.	> Ø Disconnect		

Výběr dlouhým stisknutím a posunutím

Dlouhý stisk

Stiskněte a podržte položku v seznamu.

Nyní můžete vybrat dvě nebo více položek.

Posun doleva

Stiskněte položku a posuňte doleva – zobrazí se volby pro smazání a sdílení.

Posun doprava

Stiskněte jakoukoliv položku seznamu a posuňte doprava pro zobrazení ikony sdílení.

Kalibrace senzorů

Kalibrace roztokem

Použijte postup kalibrace, který je popsaný níže pro kalibraci všech senzorů (kromě RDO). Ke kalibraci budete potřebovat následující vybavení:

- Kalibrační roztok, nebo více roztoků pro vícebodovou kalibraci
- Bezdrátový Wireless TROLL Com přopojený k Aqua TROLL 500
- Bluetooth zařízení (tablet, mobilní telefon s Android/iOS)

Připojte sondu k Wireless TROLL Com a spárujte s VuSitu.

Jemným kruhovým pohybem zahýbejte sondou pro vypláchnutí vnitřku ochranného válce a senzorů.

V menu VuSitu vyberte volbu Calibrations a zvolte senzor ke kalibraci.

Sejměte koncový uzávěr a nalijte 10-20 ml destilované vody do ochranného válce.

Postupujte podle instrukcí na displeji.

Vylejte destilovanou vodu a opakujte vypláchnutí ještě dvakrát s 10-20 ml kalibračního roztoku.

RDO kalibrace 100 % saturaci: Vodou nasycený vzduch.

Pro kalibraci senzoru Aqua TROLL 500 RDO postupujte dle níže uvedeného návodu, nebo dle alternativního postupu v následující sekci.

Umístěte ochranný válec na přístroj do kalibrační pozice (otvory ke středu přístroje).

🔊 🕏 🚀 🛈 🛜 📶 🗎 2:57 pr

Namočte malou houbičku vodou.

Calibrations

DO Saturation

🕶 土 🙃

Level

Vložte houbičku do ochranného válce.

Zašroubujte koncový uzávěr a nechte houbičku v ochranném válci pět minut.

RDO kalibrace na 100 % saturaci: Saturace pomocí vzduchového čerpadla

Naplňte nádržku vzduchového čerpadla do tří čtvrtin pitnou vodou.

Zapněte vzduchové čerpadlo a nechte 5-10minut saturovat.

	■± 合 回注意 ▼ ■ 2.57 pm
	Calibrations
	🛆 Level
	A RDO Saturation
	A RDO Concentration
	A Conductivity
	Д рн
	A ORP
	A Barometric Pressure
_	A Turbidity
	A Quick-Cal (multi-sensor)
e	Calibration Report

Spusťte VuSitu a zvolte Calibrations > RDO Saturation.

Umístěte ochranný válec na sondu do měřící pozice (otvory na kraji přístroje).

Pro dokončení kalibrace postupujte dle instrukcí na displeji.

Umístěte sondu do nádržky vzduchového čerpadla.

Pro dokončení kalibrace postupujte podle instrukcí na displeji.

RDO Nastavení salinity

Aqua TROLL 500 je vybaven automatickou kompenzací salinity. Tento program vyžaduje elektrodu vodivosti a RDO elektrodu. Když jsou obě elektrody nainstalovány, sonda provede kompenzaci salinity dle přednastavení. Pro změnu kompenzačních hodnot postupujte následovně:

Connected Instrume	nt :
Connected Instrument	DLL 400
≥ Live Readings	V1.26 19
Data Files	
Q Locations	
Low-Flow Testing	

	Aqua TROLL 400 SN 340676 v1.26 🛱	
Battery: 82% rema	ining	
Instrument Time:	10:24 PM 3/14/2019	
🗠 Live Readings	4	
Live Readings	1	
 Live Readings Calibrations Instrument Se 	i sttings	

¢	Instrument Clock	
¢	Salinity Setting	
¢	Specific Gravity Setting	
¢	Total Dissolved Solids	
¢	Level Mode	
¢	Communication Settings	
¢	SDI-12 Settings	
¢	Instrument Firmware	
¢	Restore Factory Settings	
ð	Restore Calibration Defaults	

Z hlavního menu VuSitu, vyberte **Connected Instrument**.

Zvolte **Instrument Settings** z menu v dolní části displeje.

Z menu Instrument Settings zvolte **Salinity Setting**.

Nastavte kompenzaci salinity a stiskněte **Save**.

Bodové měření ve VuSitu

Pro bodové měření s Aqua TROLL 500 a VuSitu, musí být sonda připojena k Wireless TROLL Com.

■ <u>†</u> ⊮

9

0

0

0

0

(E Live Readings

Kontinuální záznam

B

9 X 🕞 🕈 📲 9:47 AN

=

-

-

22.31 °C

852.77 mbar

Depth 1.09 ft

S Temperature 23.40 °C

Bodové měření

Provede jedno měření a uloží jej do Snapshot souboru.

E4 Start Recording 0 ■ <u>†</u> ♥ Þ जिरे•ि च 🐴 🛿 10 4 AM (E Live Readings \odot rature 22.49 °C \odot Depth 1.09 ft -0 Sarometric Pressure 852.72 mbar - \odot S Temperature 22.89 °C -

Měření se provádí v dvousekundových intervalech.

Close

Vyhledejte Snapshot soubor z Menu > Data files. Zkontrolujte volbu Snapshot.

A CONTRACT OF A CONTRACT.

🕗 Snapshot

7-12-08

0

Vyhledejte soubor z Menu >Data Files. Zkontrolujte volbu Live.

Export Dat

Použijte menu vlevo nahoře pro zobrazení dat. Vyberte soubor pro náhled a export. Stiskněte **Export** a zvolte možnost sdílení.

Zobrazení dat

Otevřte datový soubor VuSitu v jakémkoliv prohlížeči. Stiskněte tlačítko v levém horním rohu pro vytvoření CSV.

Připojení k Win-Situ na PC

Připojení k Win-Situ pomocí USB

Nainstalujte Win-Situ. Wireless TROLL Com musí být připojen k sondě a zapnut.

Můžete připojit Wireless TROLL Com k PC přiloženým USB kabelem. Připojte kabel do portu ve Wireless TROLL Com a USB portu ve vašem PC.

Otevřte Win-Situ. Vyberte **No,** když se vás SW zeptá Connect now. V liště hlavního menu klikněte na Preferences > Com Settings a vyberte správný COM port. Zaškrtněte volbu Serial Communications.

Klikněte na žluté tlačítko Connect v pravém dolním rohu obrazovky. Klikněte na Yes, pokud jste vyzváni k synchronizaci času s operačním systémem.

Práce v prostředí Win-Situ

Záložka Home

9:55:07 AM 22.976 0.474 Zobrazení datových Temperature - C Pressure - PSI Zobrazit seznam souborů lokalit 1.095 Depth - ft Zobrazení aktuálních hodnot Záznam aktuálních hodnot Tabulkové Graf Uložení aktuálních zobrazení hodnot

Záložka senzoru

	The single 5	- o x
	Ta Izi Yoo Tak Patrana Haji	
	Love TROLE \$300 Sh Sulla	
Gentla	Seal and a sea and a seal and a seal and a sea	C STATE AN A STATE AN A STATE
Barre	Presweb/tere 33 P38 (1902PM 0/21X00 2 87113 PM 9/21/2317 4 09 89 PH	
Nastavoní		
INASLAVEIII		
senzoru (Dvoiklik)		
senzora (brojnini,		
		Color Therein Land
425		gan-saume.
Kalibraco conzoru		
Raliblace Selizoru		
	3	
	Nastavení	
	senzoru	

Záložka nastavení přístroje

Připojení Aqua TROLL 500 k PLC nebo Dataloggeru

SDI-12. 3 Vodiče

EXT PWR RED
GND/RETURN BLACK
RS485(-) GREEN
RS485(+) BLUE

***Required if port power is not available

Modbus PLC rozhraní

Přehled

Modbus PLC rozhraní je zjednodušenou metodou komunikace s Aqua TROLL 500 pomocí Modbus protokolu. Zjednodušuje náročnost programování a umožňuje uživateli vyjmout elektrody a instalovat je do jiných portů. Věnujte prosím pozornost následujícím omezením při používání tohoto rozhraní:

- V sondě může být použita pouze jedna elektroda pro daný parametr.
- Pokud je daný parametr měřen i jinou instalovanou elektrodou, rozhraní použije hodnotu, která je změřená jako první.
- V sondě musí být instalován firmware verze 1.71, nebo pozdější.

Pro bližší informace o veškerých Modbus možnostech, prosím vyhledejte Aqua TROLL 500/600 specifikace na www.in-situ.com/support/type/documentation.

Nastavení přístroje

1. Nainstalujte elektrody a zapněte displej podržením přístroje vertikálně.

a. Ujistěte se, že je displej zapnutý a ověřte, že elektrody pracují.

2. Níže uvedené nastavení je tovární nastavení. Použijte WinSitu, nebo VuSitu pro resetování přístroje na tovární nastavení, pokud bylo změněno.

Kabeláž Modbus Master

Připojte bajonetový Twist-Lock konektor k přístroji a volné vodiče na druhém konci kabelu zapojte dle schématu níže:

Digital PLC		External Power - RED	
	+ +	Ground/Return - BLACK	
		R3485 (-) - GREEN	
		RS485 (+) - BLUE	

Programování PLC

1. Nastavte v sériové komunikaci nasledující hodnoty:

Mód	Start Bit	Baud Rate	Data Bits	Parita	Stop Bit
RTU	1	19200	8	Even	1

2. Nastavte adresu přístroje na: 1

3. Nastavte PLC pro probuzení sondy zasláním jakýmkoliv Modbus příkazem.

a. To může být carriage return, načtení the slave id, nebo načtení jakéhokoliv registru.

4. Načtěte **discovery** registr využitím Dodatku A pro spuštění vyčítání elektrod.

a. Vrácená hodnota může být odstraněna.

b. Každý registr je **holding register**. Některé PLC vyžadují připočíst 40000 k číslu registru, nebo adrese. Např.: 9301 bude 49301.

c. Alternativně můžete zjistit mapování elektrod ve VuSitu mobilní aplikaci nebo WinSitu.

5. Vyberte registr pro čtení PLC zařízením využitím Dodatku B

a. Některé PLC zařízení používají číslo registru přímo v programovacím procesu, jiné používají adresy registru, které jsou o jednu nižší než číslo registru. Programátor musí dodržovat PLC programovací metodu.

b. Každý registr je holding register. Nekteré PLC požaduje přpočíst k číslu registru nebo adrese hodnotu 40000. Např.: 5451 bude 45451.

6. Nastavte typ registru na: 32-bit float

a. Pokud se vás PLC zeptá, jsou to 2 registry

7. Nastavte typ bytu na: Big Endean (MSB)

a. To by mělo být zahrnuto ve výchozím nastavení a na některých PLC není konfigurovatelné.

Načítání parametrů

Pro zjištění čísla počátečního registru daného registračního bloku parametru, je napřed třeba zjistit id parametru nahlédnutím do tabulek parametrů elektrod. Poto vypočítejte počáteční registrační číslo bloku parametrů dle následující rovnice.

Počáteční registr = (Parametr Id - 1) x 7 + 5451

Např. pro elektrodu vodivosti, id parametru – Specific Conductivity, je 10 ((bit 9 bude nastaven v registru 6984, pokud je k dispozici).

Číslo počátečního registru pro parametr Specific Conductivity je tedy (10 – 1) x 7 + 5451 = 5514

Počáteční registr pro každý parametr ukazuje na blok 7 registrů, které obsahují následující informace.

Posun registru	Velikost (Registru)	Mód & typ přístupu(R/W)	Typ dat	Popis
0	2	R	float	Měřená hodnota senzorem
2	1	R	ushort	ld kvality dat: pokud je 0 - žádné chyby nebo varování. Viz: Úplná specifikace systému
3	1	R/W	float	id jednotky měřeného parametru jsou obsaženy v tabulce dole.
4	1	R	ushort	ld parametru: ld parametru pro toto místo. Viz: Úplná specifikace systému.
5	2	R/W	float	Hodnota při chybě: Hodnota, která se zobrazí, pokud došlo k chybě, nebo není daný parametr k dispozici. Výchozí hodnota je 0.0

Péče a údržba

Plán údržby

Pro ideální funkci přístroje, pošlete každých 12 až 18 měsíců výrobci na tovární kalibraci.

Části, které může servisovat uživatel

Tyto části přístroje zahrnují O-kroužky, odnímatelné elektrody, RDO hlavici a pH/ORP/ISE referenčního roztoku přechodového elementu.

O-kroužky

Přístroj má několik O-kroužků, které mohou být udržovány uživatelem, aby do přístroje nevnikla vlhkost a nepoškodila elektroniku. Při instalaci naneste velmi tenkou vrstvu vakuového maziva na nové O-kroužky. Kontrolujte O-kroužky, nejsou-li prasklé, odlomené nebo vybledlé a vyměňte je, pokud nastane jakákoliv z těchto potíží.

Výměna pH/ORP & ISE senzoru

Pro výměnu pH/ORP/ISE elektrody, nebo doplnění přechodového elementu, postupujte dle níže uvedeného návodu (je přiložena i k nové elektrodě).

Výměna RDO hlavice elektrody

Hlavice RDO-X elektrody má běžnou životnost asi 2 roky. RDO Fast Cap asi 1 rok. Postupujte podle instrukcí obsažených v soupravě pro výměnu RDO hlavice elektrody. Náhradní hlavice jsou k dispozici od autorizovaného zástupce.

Skladování přístroje

Krátkodobé skladování (méně než 1 týden)

Umístěte ochranný válec do skladovací pozice a nalijte do něj ~15 mL vody, kalibračního roztoku pH 4, nebo pH/ISE uchovávacího roztoku. Našroubujte koncový uzávěr na ochranný válec.

Vyjměte ochranný válec, elektrody a motor stíracího mechanismu.

Umístěte ochranný válec zpět na sondu otvory na střed přístroje.

pH/ORP elektroda musí během skladování zůstat vlhká. ISE elektrody mohou být skladovány suché, ale musí být před kalibrací a měřením doplněny.

Přidejte malé množství pH uchovávacího roztoku, nebo pH 4 kalibračního roztoku na houbičku uvnitř krytky elektrody.

Nasaďte krytky na oba konce elektrody. Použijte elektrikářskou pásku k utěsnění krytky elektrody, aby se zabránilo vyschnutí houbičky.

Čištění sondy

Sondu důkladně propláchněte teplou, mýdlovou vodou a znovu vypláchněte. Usušte na vzduchu. Nenechte vniknout vodu do konektoru.

Čištění a skladování pH/ORP elektrody

Pokud je platinová ORP elektroda matná nebo zašpiněná, můžete ji vyčistit tamponem s metanolem, nebo isopropyl alkoholem. Jemně otřete elektrodu, dokud se neleskne. pH elektroda musí být stále vlhká po dobu životnosti elektrody. Plnící referenční roztok elektrody má skladovou životnost 2 roky. Plnící roztok vyměňte každých 5 až 6 měsíců, nebo když:

- Se nepodaří elektrodu nakalibrovat v přijatelném sklonu a posunu rozsahu.
- Měřené hodnoty se liší.
- Měřené hodnoty během kalibrace při pH 7 jsou vyšší než +30 mV, nebo nižší než -30 mV.
- Elektroda reaguje pomalu.

Pokud se po výměně plnícího roztoku nepodaří elektrodu nakalibrovat, vyměňte přechodový element.

Výměna plnícího roztoku

Vyjměte elektrodu ze sondy a odšroubujte přechodový element.

Odstraňte starý plnící roztok.

Vložte trubičku s roztokem do komory elektrody.

Naplňte komoru. Pomalu vysuňte hadičku.

Nainstalujte přechodový element a otřete elektrodu do sucha.

Ponořte elektrodu do pitné vody alespoň na 15 minut.

Pokud je to nutné, důkladně vyčistěte konektor elektrody od plnícího roztoku: Použijte jednorázovou pipetu, naplňte konektor isopropyl alkoholem (70% až 100%), Otřepejte. 3 krát opakujte. Nechte přes noc usušit. Když je elektroda důkladně usušena, nakalibrujte ji.

Výměna spojky

Když nelze senzor nakalibrovat přiměřeným slope a offset, vyměňte přechodový element, i když jste provedli výměnu plnícího roztoku.

- Odšroubujte referenční přechodový element a vyhoďte ji.
- Vyměňte plnící roztok a našroubujte nový přechodový element.
- Ponořte na 15 minut, potom elektrodu nakalibrujte.

Přechodový element musí být stále vlhký, aby se nemusel znovu zdlouhavě navlhčovat.

Čištění

Začněte s velmi jemným čištěním, a pokud to bude nutné, pokračujte dalšími metodami. Neotírejte přímo skleněnou hlavici.

Pro čištění pH elektrody, jemně opláchněte studenou vodou. Pokud je nutné další čištění, vezměte v úvahu druh nečistot.

Pro odstranění krystalických usazenin:

- Očistěte elektrodu teplou vodou a jemným mýdlem.
- Namočte elektrodu do 5% roztoku HCl na 10 až 30 minut.

Pro odstranění olejových a mastných usazenin:

- Očistěte elektrodu teplou vodou a jemným mýdlem.
- Pro krátké namočení do 1 hodiny můžete použít isopropyl alkohol.
- Nenamáčejte elektrodu do silných rozpouštědel, jako jsou chloridová rozpouštědla, étery, nebo ketony jako aceton

Pro odstranění živočišného materiálu, nebo slizu:

- Očistěte elektrodu teplou vodou a jemným mýdlem.
- Namočte elektrodu do roztoku 0.1 M HCl na 10 minut a poté opláchněte destilovanou vodou.

Po použití jakékoliv z těchto metod opláchněte elektrodu vodou a pak namočte do pH 4 kalibračního roztoku.

Doporučení pro skladování

Neskladujte pH elektrodu v DI vodě, protože se spotřebuje referenční roztok a drasticky se sníží životnost elektrody.

Předtím, než začnete po dlouhém skladování používat pH elektrodu, opláchněte ji destilovanou vodou, a namočte ji do pH 4 kalibračního roztoku na 1 nebo 2hodiny. To nasytí skleněnou hlavici ionty vodíku a připraví k použití.

Čištění a skladování RDO elektrody

Běžná údržba

- 1. Nechte hlavici elektrody na místě.
- 2. Opláchněte elektrodu čistou vodou.
- 3. Jemně otřete měkým hadříkem nebo kartáčkem, je-li přítomné biologické znečištění.
- 4. Pokud se vyskytnou větší minerální usazeniny, namočte elektrodu na 15 minut do octa a potom na 15 minut do destilované vody.

Nepoužívejte organická rozpouštědla, poškodí hlavici elektrody. Neodstraňujte hlavici elektrody, když ji oplachujete, nebo čistíte kartáčkem.

5. Po očištění elektrody, proveďte 2-bodovou kalibraci.

Čištění optického okénka

- 1. Odstraňte hlavici.
- 2. Jemně otřete optické okénko dodaným hadříkem na optiku.

Nezvlhčujte čočku žádnou kapalinou.

Skladování

Před instalací skladujte elektrodu a hlavici v obalech dodaných z továrny.

Když je RDO elektroda nainstalována na sondu, může být skladována vlhká, nebo suchá v závislosti na konfiguraci elektrody.

Nikdy elektrodu neskladujte bez hlavice.

Čištění a skladování senzoru vodivosti

Čištění:

Začněte s velmi jemným čištěním, a pokud je to třeba, pokračujte jinými metodami.

Čištění přední strany elektrody vodivosti provádějte jemným opláchnutím čistou studenou vodou. Pokud je nutné další čištění, vemte v úvahu povahu znečištění.

Odstranění krystalických nečistot:

- Očistěte přední stranu elektrody teplou vodou a jemným mýdlem.
- Pro čištění pinů a teplotního čidla používejte jemný kartáček. Zajistěte, že budou odstraněny všechny nečistoty u paty kolíků a teplotního čidla.
- Pokud přetrvávají krystalické usazeniny, namočte jej do 5 % HCl na 10 až 30 minut a následně teplou mýdlovou vodou a jemným kartáčkem.
- Pokud přetrvávají usazeniny, namočte jej střídavě do 5 % HCl a 5 % NaOH a následně teplou mýdlovou vodou a jemným kartáčkem.

Odstraňte olejové a mastné nečistoty:

- Očištěte přední stranu elektrody teplou vodou a jemným mýdlem.
- Použijte jemný kartáček, jemně očištěte piny elektrody a teplotní čidlo. Zajistěte, že budou odstraněny všechny nečistoty u paty pinů a teplotního čidla.
- Pro namáčení můžete krátce použít isopropyl alcohol, do 1 hodiny.
- Nenamáčejte do silných rozpouštědel, jako chlorovaná rozpouštědla, étery, nebo ketony (jako je aceton).

Pro odstranění živočišných materiálů, nebo slizu:

- Očištěte přední stranu elektrody teplou vodou a jemným mýdlem.
- Použijte jemný kartáček, jemně očištěte piny elektrody a teplotní čidlo. Zajistěte, že budou odstraněny všechny nečistoty u paty pinů a teplotního čidla.
- Namočte elektrodu na 10 minut do 0.10% HCl a potom důkladně opláchněte destilovanou vodou.

Skladování:

Před instalací skladujte elektrodu v obalech dodaných z továrny.

Když je teplotní elektroda a elektroda vodivosti nainstalována na sondu, může být skladována vlhká, nebo suchá v závislosti na konfiguraci elektrody.

Pro nejvyšší přesnost v průběhu životnosti přístroje, udržujte vodivostní elektrodu ponořenou do vody 24-48 hodin před kalibrací/měřením.

Čištění a skladování senzoru turbidity

Běžná údržba:

Z optického okénka musí být odstraněny všchny cizí materiály. Pro odstranění materálu jemně omyjte okénko čistou vodou a otřete jemným hadříkem, nebo tampónem. Nepoužívejte rozpouštědla.

Skladování:

Před instalací skladujte elektrodu v obalech dodaných z továrny. Když je sensor turbidity nainstalován na sondu, může být skladován vlhký nebo suchý v závislosti na konfiguraci senzoru.

VODA

Multiparametrická sonda - Aqua TROLL 500

Základní vlastnosti

- Multiparametrická sonda pro ambulantní měření i pro dlouhodobý monitoring
- Vysoce stabilní senzory vyžadující minimální údržbu a kalibraci
- Všechny senzory lze kalibrovat na libovolné hodnoty
- Systém revitalizace pH senzoru snižuje provozní náklady
- Intuitivní mobilní aplikace VuSitu, snadný import dat do PC
- Robustní a antikorozní provedení krytí IP68
- Výstup: Modbus/RS485 nebo SDI-12, Bluetooth
- Integrovaný LCD displej zobrazující stav sondy
- Rozměry: 46 cm x 4,7 cm
- Záruka: 2 roky

Ekotechnika s.r.o.

K Třešňovce 700, 252 29 Karlík u Prahy, Česká republika + 420 251 640 511 / info@ekotechnika.cz

www.ekotechnika.cz

Aqua TROLL® 500 Multiparametrická Sonda

OBECNÉ	AQUA TROLL 500 MULTIPARAMETRICKÁ SONDA								
PROVOZNÍ TEPLOTA	-5 až 50° (23 až 122°F)			EXTI EXTI	(TERNÍ NAPĚTÍ, 8-36 (TERNÍ PROUD mA		8-36 VDC (požadováno pro běžný provoz) spánek: < 0.2 mA typicky Měření: 40 mA typicky, 75 mA max		
SKLADOVACÍ TEPLOTA	Součásti bez kapalin: -40° až 65° C (-40° až149°F) pH/ORP sondy: -5° až 65°C			INTE A LC	INTERNÍ PAMĚŤ Použi A LOGOVÁNÍ		oužijte externí datalogger nebo telemetrii		
ROZMĚRY	Délka: 46 cm (18.145") (v Průměr: 4.7 cm (1.860")	četně konektoru)		RYC	YCHLOST ČTENÍ 1 čtení každé 2 vteřiny				
HMOTNOST	0.978kg / 2.15 lbs.			KON	MUNIKAČNÍ ZAŘÍZENÍ bezdrátový TROLL Com – Wireless TROLL Com		LCom		
VLHKÉ MATERIÁLY (SONDA A SENZORY	PC, PC slitina, delrin, san keramika, nylon, PVC, gi	toprene, inconel, viton, titan, platina, rafit		VAR	VARIANTY KABELU S kapilárou, nebo bez kapiláry. Materiál Polyuretan, nebo Tefzel®		Polyuretan,		
KRYTÍ	IP68 včetně všech senzo krytu baterie nebo bez k	rů a kabelu. IP67 bez senzorů, bez kabelu		LCD	LCD DISPLEJ Integrovaný displej ukazuje stav sondy, portů, napětí a konektivitu. BlueTooth může být vypnut v menu		, portů, napětí a ut v menu		
Max. TLAKOVÁ KLASIFIKACE	Až do 10,3 bar. Senzory p	pro čpavek a dusičnany do 2 bar		SOF	SOFTWARE Android: VuSitu p Data Services: Hy		lroid: VuSitu přes Google Play Wind a Services: HydroVu	uSitu přes Google Play Windows: Win-Situ 5 ces: HydroVu	
				ROZ	HRANÍ	And	lroid 4.4, vyžaduje BlueTooth 2.0		
KOMUNIKACE	RS-485/MODBUS, SDI-12	2, Bluetooth		CER	TIFIKACE	CE, I	FCC, WEEE, vyhovující RoHS		
STANDARD SENSORS	PŘESNOST	ROZSAH	ROZLIŠ /PŘESN	ENÍ OST	ČAS ODPOVĚDI		JEDNOTKA MĚŘENÍ	METODA MĚŘENÍ	
TEPLOTA	+/-0.1°C	-5 to 50°C (23 to 122°F)	0.01°C		T63<2s, T90<15s, T95	<30s	Celsius or Fahrenheit	EPA 170.1	
BAROMETRICKÝ TLAK (Kabely s kapilárou)	+/- 1.0 mBars	300 - 1100 mBars	0.1 mBar		T63<1s, T90<1s, T95<1s		Tlak: psi, kPa, bar, mbar, inHg, mmHg;	Silikonový tenzometr	
pH ³	±0.1 pH nebo lepší	0-14 pH	0.01 pH	T63<3s, T90<15s, T95<30s		<30s	pH, mV	Std. Methods 4500- H+, EPA 150.2	
ORP⁴	+/- 5 mV	±1400 mV	0.1 mV	V T63<3s, T90<15s, T95<3		<30s	mV	Std. Methods 2580	
VODIVOST ⁵	±0.5% of čtení plus 1 μS/ cm from 0 až 100,000 μS/ cm; ±1.0% načtení od 100,000 do 200,000 μS/ cm; ±2.0% čtení od 200,000 do 350,000 μS/cm	0 až 350,000 μS/cm 0-350 ppt 0-350 PSU	0.1 µS/cn 0.1 ppt 0.1 PSU	T63<1s, T90<3s, T95<5s		ōs	Aktuální vodivost (µS/cm, mS/ cm); specifická vodivost (µS/ cm, mS/cm); Salinita (PSU, ppt); celkem rozpuštěné pevné částice (ppt, ppm): Odpor (Ohms-cm); Hustota (g/cm3)	Std. Methods 2510, EPA 120.1 Std. Methods 2520A	
ROZPUŠTĚNÝ KYSLÍK OXYGEN (RDO) WITH RDO-X OR FAST CAP ⁶	±0.1mg/L +/-2% čtení	0 až 20 mg/L 20 až 60 mg/L	0.01 mg/l	0.01 mg/L RDO-X: T63<15s, T90<45 T95<60s Fast Cap: T63<1s, T90<15 T95<30s		45s, 15s,	mg/L, % nasycení, ppm	EPA-approved In-Situ Methods: 1002-8- 2009, 1003-8-2009, 1004-8-2009	
TURBIDITA SUSPENDED SOLIDS) ⁷	+/-2% načtení nebo +/-2 NTU, FNU, w.i.g. ¹²	0 - 4,000 NTU 0-1,500 mg/L	0.01 NTU 1,000); 0. (1,000-4 0.1 mg/L	0.01 NTU (0- 1,000); 0.1 NTU (1,000-4,000) 0.1 mg/L		ls	NTU, FNU ppt, mg/L	ISO 7027	
ČPAVEK (NH4+ - N) ^{8,9}	±10% nebo ± 2 mg/L, w.i.g. ¹²	0-10,000 mg/L as N	0.01 mg/l	0.01 mg/L T63<1s, T90<10s, T95<3		<30s	mg/L, ppm, mV	N/A	
NITRÁT (NO ₃ N) ⁸	±10% nebo ± 2 mg/L, w.i.g. ¹²	0-40,000 mg/L as N	0.01 mg/L T63<1s, T		T63<1s, T90<1s, T95<	ls	mg/L, ppm, mV	Std. Methods 4500- NO3 D	
CHLORID (CL) ⁸	±10% nebo ± 2 mg/L, w.i.g. ¹²	0-150,000 mg/L	0.01 mg/L T63<1s,		T63<1s, T90<10s, T95	<30s	mg/L, ppm, mV	Std. Methods 4500- Cl- D	
TLAK ¹⁰	±0.1% FS od -5 do 50° C	Non-Vented or Vented 9.0 m (30 ft.) - Burst: 27 m (90 ft.) 30 m (100 ft.) - Burst: 40 m (130 ft.) 76 m (250 ft.) - Burst: 107 m (350 ft.) 100 m (325 ft.) - Burst: 200 m (650 ft.)	0.01% z rozsahu		T63<1s, T90<1s, T95<	ls	Tlak: psi, kPa, bar, mbar, inHg, mmHg; Level: in, ft., mm, cm, m; Level: in, ft., mm, cm, m	Piezoresistive; Ceramic	
ZÁRUKA	2 roky - sonda, RDO a zátka senzoru, teplota/vodivost, pouze teplota, turbidita (kromě pH/ORP), 1 rok - pH/ORP, chlorid ISE, příslušenství 90 dní - nitrát a čpavek ISE senzory Další: viz záruční podmínky (www.in-situ.com/warranty)								
POZNÁMKY	1Závisí na displeji a wiping, 2 Běžná reakce systému přístroje, senzorů a omezovače, když se mění teplota přibližně 15° C při mírném průtoku, 3 Čas reakce v teplotní rovnováze, 4 Přesnost z kalibračního standardu @ 25C, reakce v teplotní rovnováze ihned následovaná po kalibraci v měření, ZoBell ze vzduchu do +400 mV, 5 Přesnost v kalibračních bodech, 6 Plný rozsah RDO senzoru 0-50mg/L, 0-500% sat. EPA-schválená dle Alternate Test Procedure, 7 Dopručení uživatele, 8 Mezi dvěma kalibračními body ihned následující řádné formátování a kalibrace. Liší se dle podmínek na místě a vlivů prostředí. Víz souhrná specifikace senzoru pro potenciální rušení. 9 Průměrný čas reakce může být delší v důsledku zvyšující se koncentrace čpavku, 10 Typický průběh v plném teplotním a kalibrovaném tlakovém rozsahu, 11 Prodloužená záruka pouze pro sondu (1-3 roky až do celkem 5-ti let)								

CALL OR CLICK TO PURCHASE OR RENT 1-800-446-7488 (toll-free in U.S.A. and Canada) • 1-970-498-1500 (U.S.A. and international) 221 East Lincoln Avenue, Fort Collins, CO 80524 USA Copyright © 2018 In-Situ Inc. All rights reserved. December 2020.

Declaration of Similarity

Manufacturer:	In-Situ, Inc.
	221 East Lincoln Avenue
	Fort Collins, CO 80524
	USA

Declares that the following product:

Product name:	Aqua TROLL [®] 600 Multiparameter Sonde
Model:	Aqua TROLL [®] 500
Product Description:	Multiparameter water quality data logger

is in compliance with the following Directive

2004/108/EC for Electromagnetic Compatibility (EMC) Directive

and meets or exceeds the following international requirements and compliance standards:

Immunity

EN 61326, Electrical Equipment for Measurement, Control and Laboratory Use, Industrial Location

Emissions Class A requirements of EN 61326, Electrical Equipment for Measurement, Control and Laboratory Use

Supplementary Information:

•

The device complies with the requirements of the EU Directives 2014/30/EU and 2014/35/EU, and the CE mark is affixed accordingly.

Ben PK-

Ben Kimbell VP of R&D In-Situ, Inc. April 23, 2018

(FC

WWW.IN-SITU.COM

 221 East Lincoln Avenue, Fort Collins, CO 80524 USA

 Toll Free:
 800.446.7488
 Tel:
 970.498.1500
 Fax:
 970.498.1598

Copyright © 2015 In-Situ Inc. This document is confidential and is the property of In-Situ Inc. Do not distribute without approval.

Appendix

Appendix A: Sensor Discovery

The first register read in a PLC measurement sequence should be a 14-register block beginning with register number 6984. Reading these registers triggers the sonde to scan its sensor ports and update its sensor map. This guarantees the sonde has properly registered any changes to the sensor configuration a user may have made since the last measurement sequence. The bitwise contents of these registers indicate which parameter IDs (1 to 219) are currently available from the sonde according to the table below. Refer to Appendix B for a description of the parameter ids.

			-			
	Bit					
Register	15	14	132	1	0	
6984	16	15	143	2	1	
6985	32	31	3019	18	17	
6986	48	47	4635	34	33	
6987	64	63	6551	50	49	
6988	80	79	7867	66	65	
6989	96	95	9483	82	81	
6990	112	111	11099	98	97	
6991	128	127	126115	114	113	
6992	144	143	142131	130	129	
6993	160	159	158147	146	145	
6994	176	175	174163	162	161	
6995	192	191	190179	178	177	
6996	208	207	206195	194	193	
6997	0	0	219211	210	209	

Parameter ID Map

Appendix B: Parameter Numbers and Locations

ID	Parameter Name	Holding Register Number	Holding Register Address	Default Units
1	Temperature	5451	5450	1 = °C
2	Pressure	5458	5457	17 = PSI
3	Depth	5465	5464	38 = feet
4	Level, Depth to Water	5472	5471	38 = feet
5	Level, Surface Elevation	5479	5478	38 = feet
9	Actual Conductivity	5507	5506	65 = μS/cm
10	Specific Conductivity	5514	5513	65 = μS/cm
11	Resistivity	5521	5520	81 = ohm-cm
12	Salinity	5528	5527	97 = PSU
13	Total Dissolved Solids	5535	5534	114 = ppt
14	Density of Water	5542	5541	$129 = g/cm^{3}$
16	Barometric Pressure	5556	5555	22 = mmHg
17	рН	5563	5562	145 = pH
18	pH mV	5570	5569	162 = mV
19	ORP	5577	5576	162 = mV
20	Dissolved Oxygen Concentration	5584	5583	117 = mg/L
21	Dissolved Oxygen % Saturation	5591	5590	177 = % saturation
24	Chloride (Cl ⁻)	5612	5611	117 = mg/L
25	Turbidity	5619	5618	194 = NTU
30	Oxygen Partial Pressure	5654	5653	26 = torr
31	Total Suspended Solids	5661	5660	117 = mg/L
32	External Voltage	5668	5667	163 = Volts
33	Battery Capacity (remaining)	5675	5674	241 = %
34	Rhodamine WT Concentration	5682	5681	118 = μg/L
35	Rhodamine WT Fluorescence Intesity	5689	5688	257 = RFU
36	Chloride (Cl ⁻) mV	5696	5695	162 = mV
37	Nitrate as Nitrogen (NO ₃ as N) Concentration	5703	5702	117 = mg/L
39	Ammonium as Nitrogen (NH₄ as N) Concentration	5717	5716	117 = mg/L
40	Ammonium (NH ₄) mV	5724	5723	162 = mg/L
41	Ammonia as Nitrogen (NH₃ as N) Concentration	5731	5730	117 = mg/L
42	Total Ammonia as Nitrogen (NH₃ as N) Concentration	5738	5737	117 = mg/L
48	Eh	5780	5779	162 = mg/L
49	Velocity	5787	5786	$118 = \mu g/L$

50	Chlorophyll-a Concentration	5894	5793	118 = μg/L
51	Chlorophyll-a Fluorescence Intensity	5801	5800	257 = RFU
54	Blue Green Algae- Phycocyanin Concentration	5822	5821	118 = μg/L
55	Blue Green Algae- Phycocyanin Fluorescence Intensity	5829	5828	257 = RFU
58	Blue Green Algae- Phycocerythrin Concentration	5850	5849	118 = μg/L
59	Blue Green Algae- Phycocerythrin Fluorescence Intensity	5857	5856	257 = RFU

Appendix C: Unit IDs

ID	Abbreviation	Units			
	Ten	nperature			
1	С	Celsius			
2	F	Fahrenheit			
3	К	Kelvin			
	Pressure, Barom	netric Pressure (17-32)			
17	PSI	Pounds per square inch			
18	Ра	Pascals			
19	kPa	Kilopascals			
20	Bar	Bars			
21	mBar	Millibars			
22	mmHg	Millimeters of Mercury (0° C)			
23	inHg	Inches of Mercury (0° C)			
24	cmH ₂ 0	Centimeters of water (4° C)			
25	inH ₂ 0	Inches of water (4° C)			
26	Torr	Torr			
27	atm	Standard atmosphere			
	Distance	/Length (33-48)			
33	mm	Millimeters			
34	cm	Centimeters			
35	m	Meters			
36	km	Kilometers			
37	in	Inches			
38	ft	Feet			
Coordinates (49-64)					
49	deg	Degrees			
50	min	Minutes			
51	sec	Seconds			
	Condu	ctivity (65-80)			
65	μS/cm	Microsiemens per centimeter			
66	mS/cm	Millisiemens per centimeter			
	Resist	ivity (81-96)			
81	ohm-cm	Ohm-centimeters			
	Salin	ity (97-112)			
97	PSU	Practical salinty units			
98	ppt	Parts per thousand salinity			
	Concentr	ation (113-128)			
113	ppm	Parts per million			
114	ppt	Parts per thousand			
115		(available)			
116		(available)			
117	mg/L	Milligrams per liter			
118	μg/L	Micrograms per liter			
119		(deprecated, no longer available)			

120	g/L	Grams per liter	
121	ppb	Parts per billion	
		Density	
129	g/cm ³	Grams per cubic centimeter	
		рН	
145	рН	рН	
	Volta	ge (161-176)	
161	μV	Microvolts	
162	mV	Millivolts	
163	V	Volts	
	Dissolved Oxygen (I	DO) % Saturation (177-192)	
177	% sat	Percent saturation	
	Turbio	dity (193-208)	
193	FNU	Formazin nephelometric units	
194	NTU	Nephelometric turbidity units	
195	FTU	Formazin turbidity units	
	Flov	N (209-224)	
209	ft³/s	Cubic feet per second	
210		(available)	
211		(available)	
212	ft³/day	Cubic feet per day	
213	gal/s	Gallons per second	
214	gal/m	Gallons per minute	
215	gal/hr	Gallons per hour	
216	MGD	Millions of gallons per day	
217	m³/sec	Cubic meters per second	
218		(available)	
219	m³/hr	Cubic meters per hour	
220		(available)	
221	L/s	Liters per second	
222	ML/day	Millions of liters per day	
223	mL/min	Milliliters per minute	
224	kL/day	Thousands of liters per day	
	Volu	me (225-240)	
225	ft ³	Cubic feet	
226	gal	Gallons	
227	Mgal	Millions of gallons	
228	m ³	Cubic meters	
229	L	Liters	
230	acre-ft	Acre feet	
231	mL	Milliliters	
232	ML	Millions of liters	
233	kL	Thousands of liters	
234	acre-in	Acre inches	
% (241-256)			
241	%	Percent	

Fluo escence				
257	257 RFU Relative fluorescence units			
Low-Flow (273-288)				
273	ml/sec	Milliliters per second		
274	ml/hr	Milliliters per hour		
275	l/min	Liters per minute		
276	l/hr	Liters per hour		
	Current (289-304)			
289	μΑ	Microamps		
290	mA	Milliamps		
291	А	Amps		
Velocity				
305	ft/s	Feet per second		
306	m/s	Meters per second		

Appendix D: Register Data Formats

The Modbus protocol specification requires any multiple-byte data type to be transmitted in Big Endean order, or most significant byte (MSB) first. In-Situ devices shall use the following register data formats.

ID	Туре	Size (Registers)	Description
2	Unsigned Short	1	2 bytes, 1 register, MSB first
5	Float	2	4 bytes, 2 registers. IEEE floating point format