VW Piezometer 52611099

Copyright ©2013 DGSI. All Rights Reserved.

This equipment should be installed, maintained, and operated by technically qualified personnel. Any errors or omissions in data, or the interpretation of data, are not the responsibility of Durham Geo Slope Indicator (DGSI). The information herein is subject to change without notification.

This document contains information that is proprietary to Slope Indicator company and is subject to return upon request. It is transmitted for the sole purpose of aiding the transaction of business between Slope Indicator Company and the recipient. All information, data, designs, and drawings contained herein are proprietary to and the property of Slope Indicator Company, and may not be reproduced or copied in any form, by photocopy or any other means, including disclosure to outside parties, directly or indirectly, without permission in writing from Slope Indicator Company.

12123 Harbour Reach Drive Mukilteo, Washington, USA, 98275 Tel: 425-493-6200 Fax: 425-493-6250 E-mail: solutions@slope.com Website: www.slopeindicator.com

Contents

Introduction1
Installation2
Taking Readings8
Data Reduction9
Acceptance Test
Diagnostics15
Appendix 1: Retired Readouts 16
Appendix 2: Saturating Filters18

Introduction

Applications	The VW piezometer is sealed in boreholes and embedded in fills to measure pore-water pressures. It can also be placed in standpipes and wells to measure water levels. Typical applica- tions include:		
	• Monitoring dewatering schemes for excavations and under- ground openings.		
	• Monitoring ground improvement techniques such as vertical drains, sand drains, and dynamic compaction.		
	• Monitoring pore pressures to determine safe rates of fill or excavation.		
	• Investigating the stability of natural and cut slopes.		
	• Monitoring the performance of earthfill dams and embank- ments.		
	• Monitoring seepage and ground water movement in embank- ments, land fill dikes, and dams.		
	• Monitoring water levels in wells, standpipes, lakes, reservoirs, and rivers.		
Theory of Operation	The VW piezometer converts water pressure to a frequency signal via a diaphragm and a tensioned steel wire. The piezo- meter is designed so that a change in pressure on the diaphragm causes a change in tension of the wire.		
	When excited by a magnetic coil, the wire vibrates at its natural frequency. The vibration of the wire in the proximity of the magnetic coil generates a frequency signal that is transmitted to the readout device. The readout device processes the signal and displays a reading.		
	Calibration factors, which establish a relationship between pres- sure applied to the diaphragm and the frequency signal returned to the readout device, are used to convert Hz readings to engi- neering units.		

Installation

Installation Tips	Here are some installation tips.		
Sensor Care	• Handle the piezometer with care.		
	• If you are working in cold weather, do not allow a water-filled piezometer or a saturated filter to freeze.		
Cable Care	• Store cable where it is dry and safe from rodents and traffic.		
	• Handle cable carefully. Don't lay the cable across roads with traffic. Avoid dragging cable over rocks and sharp surfaces. Do not pull hard on the cable, since this may damage the conductors.		
	• Mark cables carefully for positive identification later.		
	• Protect the ends of signal cables so that water cannot enter the cable jacket. Cables should be terminated above ground level at a waterproof box or with waterproof connectors.		
	• If drill casing is used to hold the borehole open, it must be pulled out as backfill is placed. Use care when pulling casing so that you do not twist and damage the signal cable.		
Saturating Filters	Most VW piezometers are supplied with filters that have a pore size of 50 to 60 microns. These filters pass both air and water, so they do not require elaborate saturation procedures. Pull off the filter, fill the piezometer with water, and replace the filter.		
	If your piezometer was supplied with a high-air entry filter, please refer to Appendix 2.		
Obtaining Initial Readings	Drilling a borehole and backfilling it temporarily changes the pore-water pressure in the ground, so readings that are taken immediately after installation will not be good datum readings.		
	Recovery of the natural pore-water pressure may take a few hours to a few weeks, depending on the permeability of the soil. Recovery is signalled by stable readings over a period of a few days. A datum reading can then be obtained.		

Borehole Installation (Traditional Method)

The instructions below assume that the piezometer will be installed at the bottom of the borehole.

- 1. Drill the borehole below the required depth of the piezometer. Flush the borehole with water or biodegradable drilling mud.
- 2. Form a sand intake zone: tremie wet sand to the bottom of the borehole. You must pull drill casing slightly to keep it above the level of the sand. When the sand reaches the required depth of the piezometer, lower the piezometer into the borehole. Tremie sand around the piezometer, again pulling the casing to keep it above the level of the sand. Continue until at least six inches (150 mm) of sand has been placed above the piezometer.

Note: If you know that the water table will drop below the elevation of the piezometer, install the piezometer with its filter tip pointing upwards. This allows easy re-entry of water.

Note: Sometimes the piezometer is placed in a sand-filled canvas bag. The bag then serves as a sand intake zone.

3. Place a bentonite seal above the intake zone, using bentonite chips. A typical seal is at least 1 foot thick, but refer to project specifications for the required length. Again, be sure to pull the casing up above the level of the bentonite. Drop chips in slowly to ensure proper placement of the seal and to avoid bridging.

The bentonite seal typically requires 2 to 3 hours to set up, but refer to your bentonite instructions for exact times. Keep the borehole filled with water to fully hydrate the bentonite and prevent it from drawing water from the surrounding soil.

- **4**. Backfill with a bentonite-cement grout.
- **5.** Readings taken immediately after installation will be high, but will decrease as the grout cures. A datum reading can be taken hours to days after installation, depending on the permeability of the soil. Take readings periodically to determine when recovery has occurred (pressure readings have stabilized).
- **6.** Terminate the installation as specified. It is important to terminate the cable above ground level in a waterproof enclosure or with a waterproof connector. Protect the installation from construction traffic and mark its location with a stake.

Borehole Installation (Grout-In Method)

This method is reliable and quick. It also works well for installing multiple piezometers in one borehole or installing piezometers along with inclinometer casing.

- **1.** Drill the borehole below the required depth of the piezometer. Flush the borehole with water or biodegradable drilling mud.
- **2.** Prepare the piezometer: Submerse the piezometer in a bucket of clean water, pull off the filter to allow air to escape from the piezometer, then replace the filter.
- **3.** Tie the piezometer to its own signal cable, so that you can lower it, filter-end up, into the borehole. You may need to add weight (a bag of sand, etc). If the piezometer is installed with inclinometer casing, tape it, filter-end up, to the casing.
- 4. Back-fill the borehole with grout. Use either of the mixtures below as a starting point for your grout mix. Mix cement with water first, and then add the bentonite. Adjust the amount of bentonite to produce a grout with the consistency of heavy cream. If the grout is too thin, the solids and the water will separate. If the grout is too thick, it will be difficult to pump.

Grout Mix for Hard and Medium Soils		
Materials	Weight	Ratio by Weight
Portland cement	94 lb (1 bag)	1
Bentonite	25 lb (as required)	0.3
Water	30 gallons	2.5
Grout Mix for Soft Soils		
Materials	Weight	Ratio by Weight
Portland cement	94 lb (1 bag	1
Bentonite	39 lb (as required)	0.4
Water	75 gallons	6.6

- **5.** Readings taken immediately after installation will be high, but will decrease as the grout cures. Datum readings can be taken hours to days after installation, depending on the permeability of the soil. The lag time caused by the grout itself is measured in minutes.
- **6.** Terminate the installation as specified. It is important to terminate the cable above ground level in a waterproof enclosure or with a waterproof connector. Protect the installation from construction traffic and mark its location with a stake.

Push-In Installation

Push-in installation requires the push-in model of the VW piezometer. The piezometer has a right-hand EW drill rod thread. Also required is a disposable adapter which threads onto the piezometer and has a left-hand thread for connection to the drill rod. Normally, the piezometer is pushed a short distance into the ground at the bottom of a borehole. We do not recommend that the piezometer be driven in from the surface.

It is important that signal cable is not twisted during installation or when drill rod is removed. Also, it is important to avoid overpressuring the piezometer as it is pushed in.

- **1.** Slip the disposable adapter onto the signal cable and thread it onto the piezometer.
- **2.** Drill the borehole and flush with water or biodegradable drilling mud.
- **3.** Attach coupling pin to bottom drill rod. Feed signal cable through drill rod. Screw drill rod into adapter on piezometer. Add other sections of drill rod as required.
- **4.** Connect signal cable to indicator so that you can take readings as the piezometer is pushed in.
- **5.** Lower piezometer to bottom of borehole. If additional rods are added, prevent bottom rod from turning (because signal cable will get twisted).
- **6.** Push piezometer into the soil, checking readings frequently to make sure that pressures do not exceed the ranges shown on the calibration sheet. It may be necessary to halt or slow the process to allow pressure to dissipate.
- 7. Detach drill rod and backfill borehole as specified.
- 8. Piezometer readings will not be valid at this stage because of excess pore-water pressure created when the piezometer is pushed in. If a bentonite seal has been placed, it may cause the opposite effect. Recovery time depends on the permeability of the surrounding soil and the size of the seal. Take readings periodically to determine when recovery has occurred, and then obtain your datum reading.
- **9.** Terminate as specified. It is important to terminate the cable above ground level in a waterproof enclosure or with a waterproof connector. Protect the installation from construction traffic and mark its location with a stake.

Embankment Installation

- 1. Check project specifications for the required procedure.
- 2. In clays or other cohesive materials, form a hole for the piezometer, then place the piezometer in the hole slowly to avoid over-pressuring the diaphragm. To avoid sharp bends in the cable, a horizontal hole is preferred. Place a bentonite seal to isolate the piezometer from the cable trench.
- **3.** Protect signal cables with hand-compacted layers of fine embankment materials on top and bottom. Use lightweight power tamping or rubber-tired equipment to compact materials placed immediately above this protective layer of fines. Avoid using heavy vibratory rollers or sheepsfoot rollers until there at least 18 inches (0.5 meters) of fill has been placed above the cables.
- **4.** Avoid making tight bends in the cable. If the cable path changes direction, use extra cable at the turn. Avoid crossing cables. If cables must cross, place a layer of fine fill material between the cables.
- 5. Build water stops as specified.
- **6.** Mark the location of the piezometer with a stake and devise some protection for the signal cable to prevent any possibility of water entry.
- 7. Terminate as specified. It is important to terminate the cable above ground level in a waterproof enclosure or with a waterproof connector. Protect the installation from construction traffic and mark its location with a stake.

Installation in a Monitoring Well	VW piezometers can be installed in wells to monitor water levels. Keep in mind that the piezometer is a sealed unit and is sensitive to any pressure on its diaphragm. Thus when installed in a well that is open to atmosphere, the piezometer reading is affected by changes in atmospheric pressure as well as changes in water level.
	When accuracy better than $\pm 150 \text{ mm} (\pm 6^{\circ})$ head of water is required, atmospheric pressure must be monitored and the reading must be adjusted for changes in atmospheric pressure.
	Atmospheric pressure should be monitored by an on-site recording barometer or by a second piezometer that is dedicated to monitoring atmospheric pressure.
Installation	1. Lower the piezometer into the well and position it at the spec- ified depth or just below the maximum expected drawdown. If turbulence is expected, use a centralizer to keep the piezo- meter stable.
	2. Secure the signal cable above ground level.

Taking Readings

- Introduction The VW piezometer provides pressure and temperature data. Be sure to record both if you want to correct readings for temperature effects.
- VW Data RecorderBelow we present short instructions for using the VW Data
Recorder. The complete manual for the VW Data Recorder is
available on the Slope Indicator website.

Binding Posts	Wire Colors	
VW	Orange	Red
VW	White & Orange	Black
TEMP	Blue	White
TEMP	White & Blue	Green
SHIELD	Shield	Shield

1. Connect signal cable from the sensor to the data recorder:

- 2. Choose Hz + RTD or Hz + Thermistor.
- **3**. Select the 1400-3500 Hz range.
- **4.** The recorder displays the VW reading in Hz and a temperature reading in degrees C.
- Retired Readouts Appendix 1 presents short instructions for two retired readout units. Manuals for both readouts are available on the Slope Indicator website.
 - Instructions for reading VW sensors with a Campbell Scientific data loggers can be found in the Tech Notes section of the Slope Indicator web site.
 - Instructions for reading VW sensors with a VW MiniLogger can be found in the VW MiniLogger manual, which is available on the Slope Indicator web site.

Data Reduction

Overview	Readings from a VW piezometer are typically in Hz, rather than in units of pressure. To convert the Hz reading to units of pres- sure, you must apply calibration factors listed on the sensor cali- bration record.	
	If you record temperature readings from the built-in tempera- ture sensor, we recommend that you apply the TI factors on the sensor calibration record to correct for temperature effects.	
	Depending on your application, you may also want to correct for barometric pressure or elevation. We list these corrections later in this chapter.	
Sensor Calibration Record	Each VW piezometer has a serial number and a unique calibra- tion. Use the sensor serial number to match the sensor with its calibration record.	
Serial Number	The serial number is found near the top of the page. You can also find range, cable length, and date of calibration there.	
Calibration Factors	ABC Factors: These factors are used to convert Hz readings to units of pressure, such as kPa or psi.	
	TI Factors: These "temperature integrated" factors are used to convert Hz readings to units of pressure. The resulting pressure values are automatically corrected for temperature effects.	
	TI factors were introduced in August, 2007. Older calibration records do not have TI factors.	
Summary of Results	This table of recorded values shows the pressure applied by the calibration device, the frequency output of the sensor, and the pressure calculated by applying the calibration factors. It also shows error, the difference between the applied pressure and the calculated pressure, as a percent of the full range of the sensor.	

Calculating Pressure Apply ABC or TI factors to readings in Hz as shown below.

Using ABC Factors	1. Choose the factors for kPa or psi.
	2. Apply the factors as follows:
	Pressure = $A \times Hz^2 + B \times Hz + C$ Where:
	Hz is the frequency reading in Hertz, and
	A, B, and C are ABC factors on the sensor calibration record

Using TI Factors	1. Choose the factors for kPa or psi.
------------------	---------------------------------------

2. Apply the factors as follows:

Pressure = $C0 + (C1 x Hz) + (C2 x T) + (C3 x Hz^2) + C4 x Hz x T) + (C5 x T^2)$ Where:

Hz is the frequency reading in Hertz,

T is the temperature in degrees C from the built-in temperature sensor, and C0 through C5 are TI factors on the sensor calibration record.

Calculating Changes	Subtract the initial reading from the current reading. A positive
in Pressure	value indicates increased pressure. A negative reading indicates
	decreased pressure.

 Δ Pressure = Pressure _{current} - Pressure _{initial}

Temperature Effects Since temperature has some effect on the response of the piezometer, we recommend using TI factors whenever possible. However, the importance of correcting for temperature varies with the application:

- If the piezometer is sealed in a borehole or buried in fill, there is usually little variation in temperature, so temperature effects will be small and corrections will be less important.
- If the piezometer is suspended in a shallow standpipe or well, it is likely to be affected by day to day changes and also seasonal changes in temperature. In this case, temperature corrections will be more important.

Barometric Correction	In some locations, bar there are storms. In of barometric pressure c day, and 68 mb (1 psi)	her locations, norma hanges as large as 34	l weather may bring
Is this correction required?	Is your piezometer sealed in a borehole to measure pore-water pressure? In this case, the only pressure acting on the piezo- meter's diaphragm is the water pressure at that depth, so a parometric correction should not be applied. Even if you later found a relation between barometric pressure and pore-water pressure, you would probably not apply a correction.		
	Are you measuring the open to atmosphere? meter is the combined surface of the water. In meter will report decre remains unchanged. I uncertainty introduce must apply a correction	In this case, the press I pressure of water and f the barometric press reased pressure, even f you want to elimina d by changes in baro	ure seen at the piezo- id the air above the sure drops, the piezo- if the water level te measurement
	You can use a barome atmospheric pressure	-	
Using a barometer	 Obtain barometer reading on site at the time of reading the piezometer. The barometer should provide station pressure, i.e. the actual pressure of the atmosphere, with no adjustment for elevation above sea level. Off-site reports from weather stations are not adequate for this purpose. Subtract the barometer reading from 1 atm (1013.2 mb or 29.92 inches of mercury). This is the barometric correction 		
	value in millibar or in Hg. Barometric Correction = 1 atm - barometer reading		
	3. Convert the barometric correction value to psi or kPa.		
	Starting Unit	Multiplier	Resulting Unit
	millibar	0.1	1 kPa
		0.014503	psi
	Inch Hg	3.3864	kPa
		0.49115	psi

4. Add the barometric correction to the pressure reading.

Corrected Pressure = Pressure Reading + Barometric Correction

Using a VW piezometer as a barometer	 The VW piezometer is calibrated to report 0 psi at 1 atm. Thus, to make the piezometer report the same as a barometer, we would have to add 1 atm to the piezometer reading. A barometric correction would then be calculated as follows:. Barometric Correction = atm - (atm + piezometer reading). 1. Thus a correction can be calculated by simply changing the sign of the piezometer reading. Barometric Correction = -1 x piezometer reading 2. Add the barometric correction to the pressure reading. Corrected Pressure = Pressure Reading + Barometric Correction 		
Elevation Correction	Atmospheric pressure decreases about 0.5 psi for every 1000 feet of elevation.		
Is this correction required?	If you are correcting for barometric pressure changes as described in the previous section, no elevation correction is required. If you are monitoring changes in pore-water pressure or water levels, no elevation correction is required. You can think of elevation as a kind of offset that is eliminated when you calcu- late changes. Note that variations in atmospheric pressure will still affect readings from standpipes open to atmosphere.		
	If you require absolute pore-water pressure or ab levels, you should apply the elevation correction. tions in atmospheric pressure will still affect reac standpipes open to atmosphere.		
Calculating the Elevation Correction	1		
	For a correction in this unit:	Use this conversion fac- tor:	
	bar	1.0132	
	kPa	101.33	
	psi	14.696	

2. Add the elevation correction to the pressure reading.

Corrected Pressure = Pressure Reading + Elevation Correction

Acceptance Tests

Introduction The main purpose of an acceptance test is to provide reasonable assurance that a sensor is functioning properly. Unless you have access to sophisticated test facilities and calibration equipment, acceptance tests should not be expected to achieve the accuracy and precision of the calibration data provided on the sensor calibration record. Thus when you evaluate the results of an acceptance test, look for obvious non-conformance rather than an exact match between your data and the data on the calibration record.

Quick Zero Check 1. Ideally, this test would be conducted in a draft-free room where the piezometer can be kept at a constant temperature. At minimum, the piezometer should be placed in a location that is out of direct sunlight and allowed to reach thermal equilibrium with the surface it is resting on and the surrounding air. This takes about an hour. Do not handle the piezometer during this time or during the test.

- **2.** Connect the signal cable to readout and obtain a frequency reading. Check that you have obtained a repeatable reading.
- **3.** Apply calibration factors to convert the frequency to a pressure reading in psi.
- 4. If your local elevation is above sea level, the pressure reading that you obtain will most likely be negative because the sensor calibration is referenced to one standard atmosphere (sea level). To calculate an approximate correction for elevation, allow 0.5 psi for every 1,000 feet of elevation above sea level (0.1 kPa per 10 m). Add the correction to your reading. For example, if the elevation is 5,000 feet, add a correction of 2.5 psi to the pressure reading.
- **5.** The piezometer is working satisfactorily if the difference between the corrected pressure and zero is within 2 percent of the full scale of the piezometer (2 psi for a 100 psi piezometer).
- **6.** To make a more precise check, you would correct for the true altitude, the barometric pressure, and the temperature.

Down Hole Pressure Check	This test is conducted in a water-filled borehole or standpipe piezometer. You will need the sensor calibration record.
	1. Mark signal cable at two depths, one at a shallow depth and the other as deep as possible (within the range of the piezometer). Measure from the location of the diaphragm: 0.9 inch from the tip of the borehole piezometer; 4.4 inches from the tip of the push-in piezometer, and 2 inches from the tip of the embankment piezometer.
	2. Pull the filter off the piezometer, fill it with clean water, and replace the filter. Hold the filter end up until the piezometer is placed in the water.
	3. Lower the piezometer to the shallowest mark on the signal cable. Clamp the cable in position and wait at least 30 minutes for the piezometer to adjust to the temperature of the water. Connect the piezometer signal cable to the readout device. Check that you can obtain repeatable readings. Record the frequency reading and the temperature reading at the shallow depth.
	4. Lower the piezometer until the other mark on the signal cable is lined up with the same reference used for the shallow position. Allow the piezometer to adjust to temperature at that depth. Check that you have repeatable readings, then record the frequency reading, and the temperature reading.
	5. Convert both readings to units of pressure by applying calibration factors.
	6. Subtract the shallow pressure from the deep pressure. We do this to avoid having to correcting for altitude.
	7. Convert both pressure values to feet or meters of liquid head and compare to the distance between the two marks made on the signal cable.
	8. There are many variables that can degrade the accuracy of this test, including positioning errors, the specific gravity of water at each depth, the temperature of the piezometer at each depth, etc. You can attempt to correct for these, but the real purpose of the test is to verify that the piezometer gives you roughly the reading that you would expect.

Diagnostics

Introduction	Perform the tests below to diagnose what is wrong with your piezometer. Unfortunately, after the instrument has been installed, there is often no remedial action possible.
No Reading	Set your handheld multimeter to a low-ohm range (5k ohm).
	• Measure the resistance between the two VW wires (orange and white-and-orange). A normal reading should be about 300 ohms. If the reading is very high or infinite, the coil is damaged (or the cable is severed). If the reading is very low, the cable may have been crushed and a short has developed.
	• Measure the resistance between the temperature sensor wires (blue and white). Thermistors should read about 3000 ohms. RTDs should reading about 2000 ohms. If the reading is very high or infinite, the temperature device is damaged (or the cable is severed). If the reading is very low, the cable may have been crushed and a short has developed.
Unstable Reading	Set your multimeter to a high range (10 or 20 M ohm).
	• Measure the resistance between a VW wire and a Temp wire. The reading should be infinite or out of range.
	• Measure the resistance between any of the colored wires and the drain (shield) wire. The reading should be infinite or out of range.
	• Measure the resistance between the shield wires of two installed VW sensors. Wires must be disconnected from data logger or terminal box to make this test. The reading should be very high or infinite. A lower reading indicates the pres- ence of a ground loop.
	• Other sources of unstable readings are electrical noise from nearby power lines, radio transmitters, or motors. Also, over ranged or shocked instruments can exhibit this problem.

Appendix 1: Retired Readouts

Reading with the VWP Indicator

1. Connect signal cable from the sensor to the VW indicator's jumper cable (part# 52611950), as shown below.

Clips	Wire Colors		Function
Red	Orange	Red	VW
Red	White & Orange	Black	VW
Black	Blue	White	ТЕМР
Black	White & Blue	Green	TEMP

- **2.** Read the VW sensor: Select the 1.4-3.5 kHz range with the Sweep key. Select Hz with the Data key.
- **3.** Read the temperature sensor: Select °C with the Data key. Note that the VWP Indicator reads RTDs only and cannot read thermistors.

Reading with the DataMate MP	The DataMate MI your readings. Ho mend that you rec manual for directi	wever, for ease of cord readings in H	data reduction z. See the Data	on, we recom-
Manual Mode	 Connect the DataMate to the sensor (see connection table below). 			
	2. Switch on. Pres	s 🔽 (Manual Mo	de).	
	3 . Scroll through t	the list to find "Vil	orating Wire	Hz."
	provides readin	cite the sensor and erature reading in gs only for RTDs, used to read therm	degrees C. N not thermis	lote that this
Connections	The DataMate jumper cable has a universal connector that con- nects directly to a universal terminal box or to signal cables that are terminated with a universal connector. A bare-wire adapter (BWA) is also supplied with the DataMate. It allows connection to wires of the signal cable as shown below:			
	Terminals on BWA or Terminal Box	Wire Col	ors	Function
	5	Blue	White	RTD
	6	White & Orange	Black	VW
	7	White & Blue	Green	RTD
	8	Orange	Red	VW

Shield

Shield

Shield

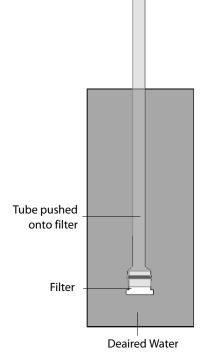
10

Appendix 2: Saturating Filters

Standard Filters	Standard filters have a pore size of 50 to 60 microns. These
	filters do not require an elaborate saturation process. Pull off the
	filter, fill the piezometer with water, and replace the filter.

High Air Entry Filters A high air entry filter has very fine pores. When the filter is saturated, surface tension of the water provides high resistance to the entry of gasses. High-air entry filters were originally used with hydraulic piezometers to monitor negative pore-water pressures in clay-core dams. The hydraulic piezometer was capable of maintaining the saturation of the filter in-situ.

The VW piezometer has little capacity to monitor negative porewater pressures and no mechanism to replenish water in the filter. If the surrounding soil dries, the filter will also dry, losing its high-air entry quality.


Saturating the Filter

Prepare deaired water by boiling water with heat or by applying a vacuum at room temperature. If you boil the water, wait for it to cool before using.

Pull the filter holder off the piezometer body. Fit a tube to the o-ring end of the filter holder. Immerse the filter in the deaired water. Allow 24 hours for the deaired water to flow through the filter and into the tube. Alternatively, apply a vacuum to the end of the tube. The vacuum pulls air from the filter and water into the filter.

Replacing the filter

Prepare a bucket of water. Submerse the piezometer body and shake out any air from the diaphragm area. Transfer the saturated filter holder to the bucket, not allowing air to touch it. Press the filter holder onto the piezometer body. Place a water filled bag around the piezometer and tie off. Remove the bag at installation time.

