LI-7825 CO₂ Isotope/NH₃ Trace Gas Analyzer The LI-7825 CO $_2$ Isotope/NH $_3$ Trace Gas Analyzer measures the four most abundant CO $_2$ gas isotopologues in air and reports δ^{13} C, δ^{17} O, and δ^{18} O with high precision and accuracy. By measuring CO $_2$ isotopologues and calculating isotope ratios, researchers can: - Identify the sources and sinks of atmospheric carbon - Partition net ecosystem carbon exchange - Gain insight into biological processes - Evaluate carbon sequestration efforts ## Measuring atmospheric CO₂ isotopologues The LI-7825 meets or exceeds requirements for long-term atmospheric background measurements and offers a versatile platform for a range of applications for a better understanding of CO_2 emissions from anthropogenic and natural sources. ## Measuring NH₃ The LI-7825 measures higher concentrations of NH₃, and is suitable for detecting ammonia in livestock barns, feedlots, barnyards, fertilizer applications, fence line monitoring, ammonia leaks, and other applications where NH₃ concentration is elevated above natural abundance. ## **Applications** - Atmospheric monitoring - Urban emissions monitoring - Mobile emissions monitoring - Large area emissions monitoring - Sensor networks - Mud gas logging Figure 7. Ten-day CO₂ Isotope stability data from an LI-7825 CO₂ Isotope/NH₃ Trace Gas Analyzer. Data for the Allan Deviation plots were collected over a 10-day period, where, prior to the measurement of test gas, the LI-7825 was powered on to sample ambient air for 24 hours. For the study, it was connected to a 400 ppm CO₂ tank with stainless steel tubing. ## **Specifications** #### CO₂ Measurements Response Time $(T_{10}-T_{90})$: \leq 2 seconds from 0-400 ppm Range: 50 to 2,000 ppm Precision (1σ): 0.05 ppm at 400 ppm with 5-minute averaging Maximum Drift: < 0.5 ppm per 24-hour period #### δ¹³C Measurements Precision (1σ): <0.5 % at 400 ppm CO_2 with 1 second averaging 0.04 % at 400 ppm CO_2 with 5-minute averaging Maximum Drift: <1 % per 24-hr period #### δ¹⁸O Measurements Precision (1σ): 0.1 ‰ at 400 ppm CO₂ with 5-minute averaging Maximum Drift: <4 % per 24-hr period #### δ¹⁷O Measurements Precision (1σ): 0.4 ‰ at 400 ppm CO_2 with 5-minute averaging Maximum Drift: <12 % per 24-hr period ### NH₃ Measurements Range: 0-30,000 ppb Precision (1σ): 2 ppb at 300 ppb with 1 second averaging Response Time $(T_{10}-T_{90})$: ~5 minutes. * #### H₂O Measurements **Range:** 0 to 60,000 ppm Precision (1σ): 45 ppm at 10,000 ppm with 1 second averaging 20 ppm at 10,000 ppm with 5 second averaging ^{*}NH₃ measurement response time is dependent upon gas composition and inlet pneumatic configuration including tubing/ fitting materials, flow rates, and upstream volumes.